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By considering functions defined on the unit interval with a single zero mini- 
mum and a single unit maximum we are led to a version of the doubling or 
universal transformation. The fixed point functions of this doubling transforma- 
tion have certain invariance properties under conjugacy. These invariance 
properties lead to a widening of the concept of universality to power law 
conjugacy classes in which the Feigenbaum divergence parameter ~ is a function 
only of the product of the powers with which iterating functions approach unity 
at the maximum and zero at the minimum. We also construct an effective 
method for computing the divergence parameter from iterates, and derivatives 
of iterates, generated by the appropriate fixed point function. 

KEY WORDS: Maps on an interval; iteration; conjugacy; universal; fixed 
point function; functional equation; doubling transformation. 

1. INTRODUCTION 

The behavior of first-order difference equations 

x~+, = q,(x.) (1.1) 

where 0(x) has the form shown in Fig. l has been the subject of much 
recent study. (1) Even for simple cases, such as 

, ( x )  = Xxe -x and •(x) = ~kx(1 - x) (1.2) 

which have appeared extensively in the biological literature, the behavior 
can be quite intricate and exotic. (2) 

Typically, when + depends on a parameter • that controls the slope of 
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 mo• 

Fig. 1. Relevant part of the function on the interval ~(ffmax) < X < ~Pmax" 

at  its (single) nontrivial  fixed point  x* [as in (1.2), for example],  one finds 
that  x* is stable (that is, the iterates x n tend to x* as n tends to infinity) for 
a range of values of X until qr passes through - 1 ,  at which point,  
corresponding to ?~ = ?t~ say, the fixed point  bifurcates  into two fixed points  
x, y of per iod 2, or equivalently to a two-cycle satisfying 

x = ~ ( y )  and  y = q~(x) (1.3) 

or in terms of the second iterate if(z) of the funct ion ~ defined by  
funct ional  composi t ion as 

,~2)(x) ------- fro q~(x) =-- q,(q~(x)) (1.4) 

x = ~(2)(x) and  y = ~,(2)(y) (1.5) 
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Thereafter one gets a cascade of bifurcations to 2n-cycles occurring at 
parameter values X~, n = 1, 2 . . . .  that approach a limiting value X~ < oo 
as n tends to infinity. Beyond ) ~ ,  other even cycles appear followed by odd 
and even cycles. In some cases cycles of all orders are present while in other 
cases no cycles of any order are present. Such behavior is usually referred 
to as "chaotic. ''(2) 

An interesting universal feature of the sequence (~n) was discovered 
recently by Feigenbaum. (3) He found that 

[X~ - X o o [ ~ 8  -~ as n ---> oo (1.6) 

where 8 apparently depends only on the shape of q~(x) near its (single) 
maximum. For example, in the usual case of a quadratic maximum [such as 
Eqs. (1.2)] Feigenbaum found numerically that 3 = 4.6692016 . . . .  He also 
discovered that suitably scaled 2~-iterates of ~(x) approach a universal 
function with a universal scale factor of a = 2.5029079. . .  for the qua- 
dratic maximum examples. Recently, some of these ideas have been made 
rigorous by Collet, Eckmann, and Lanford (4) when q~(x) near its maximum 
( a t  Xm) has the shape Ix - Xm[ l+e for �9 sufficiently small. Lanford (5) has 
also reported progress in the more usual case of �9 = 1. 

Our purpose here is to discuss some features of this apparent universal 
behavior by focusing attention on those properties of sequences of iterates 
{x~) obtained from (1.1) that are preserved when such sequences become 
arbitrarily long. In this respect it is clear that one can immediately restrict 

A 

one's attention to conjugacy classes of functions consisting of functions r 
and q~ related by a conjugacy defined by 

q~ = g o q~o g - '  (1.7) 

for some invertible g. Thus it is clear from (1.7) that properties of iterates of 
one function (q~ or 4~) can be obtained immediately from the other. 

In the following section we present a variant of the so-called "doubling 
transformation" (T) that is designed to easily incorporate conjugacies, and 
in particular power law conjugacies [ g ( x ) =  xp in (1.7)]. Power law con- 
jugacies are shown in Section 3 to be the only relevant conjugacies so far as 
asymptotic properties of sequences of iterates are concerned. 

The parameter 8 [Eq. (1.6)] governing the local divergence from a fixed 
point of T is shown in Section 4 to be invariant under a power law 
conjugacy. This leads immediately to a modified view of universality in 
which the form of the function near its maximum is not the only feature 
determining the value of the divergence parameter d. 

In Section 5 we present an alternative approach to linearization that 
results in an algorithm for computing 8 from the appropriate fixed point 
function, and incidentally provides a clear demonstration that, in the 
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conventional view, the linearized T has only a single isolated eigenvalue 
8 > 1 .  

2. THE DOUBLING TRANSFORMATION 

Initially, let us consider functions as shown in Fig. 1 which are zero at 
the origin, have a single maximum, are continuous, monotone increasing 
below the maximum, and monotone decreasing above the maximum. 

Since we are interested in asymptotically long sequences of iterates, 
not all of the function as shown in Fig. 1 is relevant. For example, only the 
first iterate can be greater than the maximum q'max of ~. Asymptotically 
then, we lose no information if we consider x to be bounded above by q~max" 
Furthermore, if x 0 < ~(~m~x), a sequence of monotone increasing iterates 
will occur until an iterate eventually falls in the range 

(~((/)max) < X < ~rnax (2.1) 

This defines the asymptotic range of iterates; once an iterate is inside this 
range all subsequent iterates are inside this range. 

Asymptotically then, the only relevant part of ~ is inside the square 
shown in Fig. 1 with x and g,(x) in the range (2.1). 

A suitable change of variable and a rescaling (amounting to a con- 
jugacy) may always be chosen so that we need only consider functions 
defined in the unit square 0 < x < 1; 0 < if(x) < 1. We also find it conve- 
nient to apply an additional conjugacy g ( x )  = 1 - x [Eq. (1.7)], which has 
the effect (shown in Fig. 2) of turning the unit square upside down and 
back-to-front. We shall justify this convenience shortly. 

Thus we are led to consider the class of maps 

C = { ~lq~: [ 0, 1 ] --> [ 0, 1 ]; ~,(0) = 1; monotone decreasing 

to q,(b) = 0 on 0 < b < 1 and monotone increasing 

to ~ ( 1 ) =  a < 1 o n b  < x < 1) (2.2) 

Since we are interested in iterates obtained from functions in E it is 
natural to consider iterates of functions themselves in E. For example, in 
Fig. 2 we have sketched the second iterate ~2) [Eq. (1.4)] of a typical ~ E E 
for the particular case where 

a = ~(1) < x* = ~(x*) (2.3) 

The interesting feature in this case, as can be seen from Fig. 2, is that 
iterates obtained from if(2) below (above) x* always remain below (above) 
x*. Thus the function q, is restricted in such a way that only even cycles can 
appear so that one is including here the region of bifurcating 2"-cycles. 
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Fig. 2. Form of conjugated qS. The relevant parts of (h ~ q~(x) are inside the two small squares 
and are conjugates of one another. 

(Notice in particular that when a = 0 and b = 1, one has a stable two-cycle 
0, 1.) Also, as shown in Appendix A, the two disjoint pieces of if(2) (above 
and below x*) are conjugate to one another so that one need only focus 
attention on one piece. Furthermore, for reasons given above, only one of 
the two conjugate pieces of q~2~ shown in the little boxed squares is 
asymptotically relevant. It  will be noticed in particular that the piece of q~(2) 
on 0 < x < a resembles a scaled-down version of a function in the class E. 
By an obvious change of scale we are then led naturally to consider the 
"doubling transformation" T:  C -~ C defined by 

Tep(x) = a -'ep(q~(ax)), 0 < a = qS(1) < 1 (2.4) 

In view of the above remarks, all questions with respect to the 
behavior of long sequences of iterates (1.1) can equally well be answered by 
studying the iterated functions 

4& =_ Tkq~, k = 1,2 . . . .  (2.5) 

obtained by repeated application of (2.4), but only so long as our conjugacy 
requirement 

a k = ~,k(1) < xff = q~(x~) (2.6) 

is satisfied. 
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When condition (2.6) is violated it makes no sense to continue applica- 
tion of the doubling transformation T. The question then arises as to the 
circumstances under which the process (2.5) can be continued indefinitely. 
This question is discussed in the following section. 

We note in passing that (2.4) is similar to the universal transformation 
of Feigenbaum (3) and also to the doubling transformation of Collet, 
Eckmann, and Lanford. (4) These authors choose to consider symmetric 
functions on [ -  1, 1] with a single maximum at the origin. These functions 
without the symmetry requirement, are in fact (as shown in Appendix B) 
conjugate to the upper relevant portion of 0 (2) shown in Fig. 2. 

The advantage of (2.4) is that all quantities are nonnegative and as a 
result there are no ambiguities in sign when discussing power law conjuga- 
cies. These conjugacies, as we will see, play a particularly important role in 
what follows. 

3. CONVERGENCE TO THE FIXED POINT OF T AND POWER 
LAW CONJUGACIES 

Suppose for the sake of argument that we have a one-parameter family 
of maps q~x~ C such that for an increasing sequence of values X,, n = 1, 
2 , . . . ,  ~x, has a (super-) stable 2"-cycle that includes the minimum. We 
will assume in addition that XnI'X~ < OO as n ~ oo and that X - X 1 corre- 
sponds t o a - - 0 ,  b = l i n C .  

Now in general, it is easily seen from (2.4) that if q, has a stable 2p 
cycle, Tq~ has a stable p cycle. It follows that Tnq~ x" has a superstable 
two-cycle and hence that 

r = r"oX"(1) -- 0 (3.1) 

Similarly if q)>" has an even non-2" cycle, say a q2" cycle where q is odd, 
TnO x' has a q cycle which is odd and hence from the remarks of the 
previous section the condition (2.6) is violated after n applications of T. In 
this case, X '>  h~,  and as remarked previously, it makes no sense to 
continue the doubling transformation. Similarly, from (3.1) and (2.4) 
Tn+lq) x" is not defined so the repetition of the doubling transformation 
must also cease, at least for values X, < Xoo corresponding to superstable 
2n-cycles. 

Assuming there are no pathologies it seems reasonable to assert on the 
basis of "continuity" that the doubling transformation cannot be applied 
indefinitely when h v a h~.  Although there is, to the authors' knowledge, no 
proof of this assertion, it has been adequately demonstrated numerically, O) 
and moreover, that when X = ~oo, 

T~r x~ --->f as n ---> oo (3.2) 
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which is a fixed point of T. That is, from (2.4) 

f (x )  = a-l f( f (ax)) ,  a = f ( 1 )  (3.3) 

The existence of fixed point functions (3.3) has been proved in certain 
cases (4'5) and it is commonly believed that the particular fixed point 
approached in the limit (3.2) depends solely on the shape of @~ at its 
minimum. We shall see in a moment that this is not strictly true but 
nevertheless from a certain viewpoint, the claimed "universality" is some.- 
what wider than previously thought. 

In a search for universal behavior it seems natural to begin with the 
notion of conjugacy. Thus consider a sequence of functions 

( t~k = Tk~, k = 1 , 2 , . . .  } (3.4) 

obtained by applying T to a particular initial function ~. 
Now make a proper conjugacy [by this we shall mean g (0 )=  0 and 

g(1) = 1 in (1.7)] of the initial ~: 

q~ = g o , o  g-1 (3.5) 

and apply T to ~ to obtain the sequence 

Note that if 

A 

1,2. . .  ) 

A 

~'k = gk ~ g'k ~ gk -1 

where gk is a proper conjugacy, then 
A 

~k(1) = gk ~ O~(1) 

and after some algebra, 
A A 

~bk+l = Td#k = gk+l ~ Ck+I ~ gz+ll 

where 

and 

= [ lg (o (1)x) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

gZg1(x) = [d?k(1)]-1 gffl(i gk ~ e~k (1)]x) (3.11) 
A 

Since the initial functions ~ and ~, are related by a conjugacy (3.5) it 
then follows by induction from (3.7) and (3.9) that '/'k and ~k are conjugates 
(3.7) of one another, where from iteration of (3.10) 

Sk(x) = [ g ( P k ) ] - '  s(Pk x) (3.12) 
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and 

k - I  

ek = l 'I r [~,o~d?] (3.13) 
l = 0  

In order that the sequence (Ok) not terminate it is necessary, from 
(2.4) and (2.6), that 0 < q,t(1) < 1, l = 0, 1,2 . . . .  The Pk, therefore, become 
arbitrarily small and from (3.12) it follows that gk depends solely on the 
behavior of g(x) near x = 0. 

In particular, if ~ and ~ depend upon x in the same way at x -- 0 and 
at their respective minima, then g(x),,-~x as x--~0. If this is the case, then 
from (3.12) and (3.7) 

gk(x).'--,X (VX) a n d  ~k""'@k as k ~  ce (3.14) 

If on the other hand g were chosen so that it approached zero like x ;  
for some power p as x approached zero, then for all 0 ~< x < 1, 

gk(X)~X e and ~k(X)~[eOk(X'/P)] p a s k - ~ o o  (3.15) 

A 
That is, ~k and t~k in this case are asymptotically related by a power law 
conjugacy. 

As a particular case, if the initial function ~ were chosen to be a fixed 
point of T, then the above argument shows that any conjugacy of the fixed 
point function converges under repetition of T to a power law conjugacy of 
that fixed point function. It is also easily verified that a power law 
conjugacy 

f (x) = [ f (x  '/e) ] '  (3.16) 

of a fixed point f of T with reduction parameter a = f(1), is also a fixed 
point of T with reduction parameter a e. 

In summary then, we have shown that conjugacy classes, of functions 
that converge to fixed points of T, converge under successive application of 
T to conjugacy classes of the respective fixed points of T, and that 
asymptotically, the only relevant conjugacies are power law conjugacies 
(3.16). 

We shall demonstrate in the following sections that 8 [Eq. (1.6)] may 
be calculated directly from a fixed point function and that power law 
conjugacy classes are universal in the sense that functions related by a 
transformation (3.16) have the same value of 8 [Eq. (1.6)]. It then follows 
from the above that "8"  depends not only on how a function behaves near 
its (zero) minimum but also on how it behaves near its maximum (at x = 0). 
This dependence, however, is only on the product of the two exponents 
characterizing the behavior of the function at its two extrema. 
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For example, in the above notation, the function 

q~(x) = (1 - )%~x2) 2 (0 < )~ < 1) (3.17) 

has a quadratic minimum and converges to a fixed point of T but does not 
have Feigenbaum's 8 = 4.6692016 . . . .  The value of 6 = 8 . 3 . . .  in this 
case is characteristic of "a quartic" and this follows from the fact that ~(x) 
(3.17) is a power law conjugate of a "legitimate" quartic. That is, 

[q~(x,/2 ) ]2= (1 - ) k ~ x )  4 (3.18) 

In general, functions of the form 

~(x) = (1 - ~o~xS) t with st =p  fixed (3.19) 

form a universality class in the sense that they all converge to a conjugacy 
class of fixed points of T characterized by a "8"  that depends only on p. 

4. LINEARIZATION AND LOCAL DIVERGENCE FROM A 
FIXED POINT FUNCTION 

In the previous section we have seen that fixed points (3.3) of the 
doubling transformation (2.4) are unstable in the sense that parametrized 
functions q~x do not iterate to fixed points of T unless 2~ is chosen precisely 
to be the accumulation point 2~ of bifurcating 2n-cycles (1.6). To investi- 
gate the nature of the instability it is then natural to consider the action of 
T on some function "close to" a fixed point function. More precisely, for 
small E and f a fixed point (3.3) of T we obtain from (2.4) the linearized 
form of the doubling transformation 

To ( f  + eh)(x) = f ( x )  + es o h(x) + O(e 2) (4.1) 

where the linear operator s is defined by 

s h(x) = a - ' (  h(1)(xf'(x) - f (x))  

+f ' ( f (ax))h(ax)  + h(f(ax))}  (4.2) 

In order to preserve the normalization f(O) = 1 we require 

h (0) = 0 (4.3) 

Assuming that f is regular at the origin [or at least that xf'(x)-->O as 
x--->0 + ]  the first term in (4.2) is essentially just a rescaling to give 

o h ( 0 )  = 0.  

Since s is linear, repeated application of (4.1) gives 

T"o ( f +  eh)(x) = f ( x )  + Es h(x) + O(e 2) (4.4) 
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and if s has a single isolated maximum eigenvalue 8 > 1, it follows that 

Z n~ ( f +  eh)(x)~f(x)  + eS~H(x) + O(e 2) (4.5) 

for some function H(x) depending on h(x) and the principal eigenfunction 
of s In other words, the rate of divergence from a fixed point function f is 
governed by the maximum eigenvalue of the operator s obtained from T 
by linearizing around this fixed point function. 

The existence of such an eigenvalue (6 > 1) has been proved in the 
special cases mentioned previously. (4~ In the following section we give a 
formula for actually computing 8 from its associated fixed point function f. 

On the subject of universality it turns out that power law conjugacies 
also play an important role in the sense that if f and f are related by a 
power law conjugacy (3.16), the associated linear operators s and s 
the same point spectrum, and in particular the same maximum eigenvalue 
(assuming that it exists). 

To prove this we simply note that for the operator S defined by 

So ~(x) = [ f(x~/P) ] p- ]~p(x 1/p) (4.6) 

we have from (4.2) the operator identity 

s = Ss (4.7) 

It follows that if ~p is an eigenfunction of s with eigenvalue X then SLp is an 
A 

eigenfunction of s with eigenvalue ~. Reversing the roles of f and f 
then shows that s and s have identical point spectra. 

Power law conjugacy classes, therefore, have the same d so in some 
sense these classes form universality classes. From the above remarks and 
those of the previous section it may well be that these classes are the only 
universality classes. 

There are several ways to show that the "divergence parameter" 8 
defined above also gives the rate of convergence (1.6) of the )t~ parameters 
to X~. Perhaps the simplest way is to consider the one-parameter family of 
maps @ defined by 

@(x) = f(Xx) (4.8) 

where f is a fixed point function (3.3) of T. 
In this case X~ = 1, and modulo some regularity assumption, there will 

be a monotonic increasing sequence of values ~ < 1, n = 1 , 2 . . .  converg- 
ing to unity and corresponding to superstable 2"-cycles of @. 

Setting h = X, in (4.8) we obtain 

f(x + (• 1>) 
= f (x )  + (X n - 1)xf'(x) + O (X~ - 1) 2 as n ---> oe (4.9) 
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Substitution into (4.5) then gives [with h(x)  = xf '(x)] 

T" o q ~ L ( x ) ~ f ( x )  + (h, - 1)6"H(x)  + O ( ~ k  n - l )  2 (4.10) 

Setting x equal to unity and noting (3.1) we then find that 

1 - X , ~ C 6 - "  as n--> ~ (4.11) 

where C = f ( 1 ) / H ( 1 ) .  

. COMPUTATION OF THE DIVERGENCE PARAMETER 8 

In order to compute 6 we begin with (4.2) expressed in the form 

s ho(x) = a-lho(1)Lp(x) + h , (x )  

where 

and 

~(x )  = x f ' ( x )  - f ( x )  

(5.1) 

(5.2) 

h, (x )  = a - ' [  ho( f (ax) )  + ho(ax ) f ' ( f (ax ) )  ] = A o ho(x ) (5.3) 

Differentiating the fixed point equation (3.3) with respect to x we 
obtain 

i f ( x )  = f ' ( f ( a x ) ) f ' ( a x )  (5.4) 

and assuming that f is a regular fixed point function [by which we mean 
if(O) ~ 0 and finite] we have that f '(1) = 1 and from (5.1) and (5.2), 

s ~b(x) = a - ] ~ ( x )  (5.5) 

Repeated application of (5.1) then gives 

s o ho(x ) = a,4,(x) + h, (x)  (5.6) 

where 

ht (x  ) = A ' o  ho(x), l =  1,2 . . . .  (5.7) 

and from the normalization condition s o h0(0 ) = 0 we have [since tp(0) 
= - 1 ]  

= h,(o) (5.8) 

Setting 

hl(x  ) = n , ( x ) f ' ( x ) ,  l = 0, 1 , 2 . . .  (5.9) 

in (5.7) and using (5.4) we obtain, after iterating (5.7), the expression 

2'- ,  no(f(e)(a%)) 
nz(x ) = a -z ~ (5.10) 

k=O f(k) '(a%) 
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where f(k)' denotes the derivative of the kth iterate f(k) of f and f(~ 
~----X. 

Now since a < 1 it follows that nl(x ) is asymptotically independent of 
x (in the unit interval) as l--> oo so in the above expressions we can replace 
nl(x ) by nt(0 ) for large l. 

Combining (5.2), (5.3), (5.6), (5.8), and (5.9) we then have, as l ~  oo, 

s no(x) f ' (x)~nl(O)( f ' (x  ) +f '(O)[xf ' (x)  - f ( x ) ]  } (5.11) 

Since this result holds for all no(x), it follows that 

nt(O)~A61 as l ~  oo (5.12) 

where 6 is the maximum eigenvalue of s or more precisely 

6 = lim [nl+l(O)/nl(O)] (5.13) 
l---> oo 

At first sight it may appear from (5.10) that 6 defined in this way 
depends on the function no(X ). In Appendix C, however, we show that this 
is not the case. 

A convenient choice for no(x ) is no(x ) = x, giving, from (5.10) and 
(5.13), 

= lira [XI+I/XI] (5.14) 
1---> o~ 

where 

2'-l  f(~)(O) 
x, = a - '  Z (5.15) 

k= I f(k)'(0) 

Summing this series as a method for calculating the divergence param- 
eter is quite efficient. Thus given an algorithm for computing f (x)  and 
making use of the fact that 

k - I  

f(k)'(x) = I-I f '(f(S)(x)) (5.16) 

we can write X 0 as a kind of continued fraction: 

' { ' [ a'X, = f'(O) f ( O ) +  jh(jT(O) ) f(f(O)) 

' 1 + f'(f(f(O))) [ f ( f ( f (O) ) )+ . . .  (5.17) 

where there are 2 l - 1 terms in the sum. 
For example, using Feigenbaum's algorithm for computing the regular 

fixed point function with a quadratic minimum and using the relation (B.5) 
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we obtain from (5.17) the estimates 

X 2 /  X , = 4.671, X3 /  X 2 = 4.66922 

X 4 / X  3 = 4.669204, X s / X  4 -- 4.6692019 (5.18) 

compared to the exact value of 8 = 4.6692016 . . . .  
Finally it should be remarked that the assumption of regularity for f 

(f ' (0) finite) is a convenience rather than a necessity. Thus since nt(x ) 
above is asymptotically independent of x we can substitute say x = 1 if 
there is trouble at the origin. In any event if a fixed point function behaves 
as a power of x (other than x itself) at the origin, the function can be made 
regular by a power law conjugacy which at the same time preserves the 
value of 8. 

6. D I S C U S S I O N  

In this paper we have presented an alternative view of universal 
properties of maps on an interval which highlights the role played by power 
law conjugacies. 

To take account of such conjugacies we find it convenient to consider 
functions defined on the unit interval with a single zero minimum and a 
single maximum of unity at the origin as shown in Fig. 2. Such functions 
are conjugate to those considered by other authors as are fixed points of 
our respective doubling transformations. 

We show that conjugacies of a fixed point function f of our doubling 
transformation T converge in general to power law conjugacies of f and 
moreover that local divergence from f is governed by a parameter 8 that is 
invariant under power law conjugacies. 

This analysis shows a departure from the conventional outlook on the 
properties of the divergence parameter. It is usually asserted that this 
parameter is a function only of the behavior of the iterating function near 
its interior extremum, in our case the zero minimum. However, from the 
aforementioned invariance, we show that the parameter also depends on 
the behavior of the iterating function near its maximum (at x = 0). This 
nevertheless leads to a widening of the concept of universality to power law 
conjugacy classes in which the divergence parameter is a function only of 
the product of the powers with which the interating function approaches 
unity at the maximum and zero at the minimum. If one standardizes either 
one of these powers to be unity, the divergence parameter is, of course, only 
a function of the other. 

Finally, by choosing a fixed point function with standardized power 
unity at the maximum we construct a very effective method for computing 
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the divergence parameter from iterates, and the derivative of iterates, of the 
fixed point function evaluated at the origin. 

The analogy between the doubling transformation and the renormal- 
ization group transformation in critical phenomena is striking and has been 
discussed previously. O) 

In our approach one can think of initializing maps of the form, say 

q,X(x) = [1 - hx'[ t (6.1) 

as representing a class of "Hamiltonians" incorporating the "temperature" 
X. Under repetition of the (renormalization) doubling transformation T, the 
Hamiltonian (6.1) converges to a fixed point Hamiltonian (of T) when X is 
set equal to the "critical temperature" he .  Local divergence from the fixed 
point Hamiltonian is governed by relevant eigenvalues 6 > 1 of the linear- 
ized transformation. 8 determines critical exponents, and universality 
classes consist of those Hamiltonians which give rise to the same critical 
exponents. 

In the simple case (6.1) we have shown that Hamiltonians with the 
product st fixed belong to the same universality class. More generally we 
have shown invariance of ~ under conjugacy. It would be interesting if the 
notion of conjugacy and its relevance to universality could be adapted to 
real physical systems. 
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A P P E N D I X  A. C O N J U G A T E  PARTS OF q) o 

The rescaled part of ~ o (~ on 0 < x < a = ~(1) is given by 

,~x(x) = a -lep(ep(ax)) (A.t) 

and on c = 1 - 4~(~(1)) < x < 1 by 

~2(x) = e - ' [  1 - 0(~(1 - cx))] (A.2) 

These correspond respectively to the lower and upper small squares in Fig, 
2. Equation (A. 1) is just the doubling transformation (2.4). 

To show that ~2 is conjugate to ~1 define 

g ( x )  = c - ' [ 1  - q,(ax)] (A.3) 

which is easily seen to be monotone on [0, 1] and thus may be inverted. 
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Let 

h(x) = a-'ok(1 - cx) (A.4) 

so that h(0) = 1 and h(b/c)  = 0 corresponding to the zero minimum of ~. 
Solving (A.3) for O(ax) and substituting into (A.1) we obtain 

0 , (x)  = a-10(1 - cg(x)) = h(g(x))  (A.5) 

Similarly, from (A.2), (A.3), and (A.4) we have 

02(x) = c - ' [ 1  - e~(ah(x))] = g(h(x)) (a.6) 

Comparing (A.5) and (A.6) shows that 

~2 = g o ~1 o g -1  (A.7) 

and Bob's your uncle. 

APPENDIX B. RELATION TO FEIGENBAUM'S 
UNIVERSAL FUNCTION 

The "Universal Transformation" of Feigenbaum (~) and the "doubling 
transformation" of Collet, Eckmann and Lanford (4) are closely related to 
the second kind of functional transformation defined by (A.2). A fixed 
point function of this transformation would satisfy 

f (x )  = a ( 1 -  f ( f ( 1 -  a - ' x ) ) )  
(B.1) 

a = [ 1 -  f ( f ( 1 ) ) ] - '  

Let x = b specify the minimum of f (x)  so that f (b )=  0, and note, 
therefore, from (B.1) that 

f(1 - b /a )  = 0 

and thus that 

b = a(1 + a) -1 

Using these results, the conjugacy 

g(x) = x -  b, g - ' ( x )  = x + b 

transforms (B.1) into 

/ ( X )  = -- 4 ( / ( - -  O/-1X)) 

where 

/ ( x )  = g ( f ( g - l ( x ) ) ) =  f ( x  + b ) -  b 

(B.2) 
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This, with the internally consistent assumption that f is even in x, 
yields the functional equation of the above-mentioned authors: 

f ( x ) =  - 4( f ( ,~- lx))  (B.3) 

A solution to this equation, the fixed point equation of the doubling 
transformation, will thus be conjugate to a solution of (3.3) since both are 
conjugate to a solution of (B.1). Since the form of the fixed point equation 
for the doubling transformation (B.3) and the equation (3.3) are the same, 
the conjugacy connecting them must be a power law conjugacy according 
to the results of Section 3. 

To find the power of the conjugacy notice that the reduction parame- 
ter a of (B.2) is the same as the reduction parameter of (B.1). Thus we seek 
a connection between the reduction parameter of (B.1) and the reduction 
parameter of (3.3). 

If we iterate (B. 1) 2 N times we obtain 

= o[I-F(;'(,-- ' )ll 

Let x = b and subtract b from both sides. Recalling that a = b/(1 - b) we 
obtain 

<,- ' :  

That is, 

., = -[ b - J"+' '(0)] [. - J"-'(0)]-' (.4) 

for any N. 
Again, the results of Section 3 show that repeated application of the 

functional transformation (2.4) to the function f will asymptotically ap- 
proach a solution of (3.3). Thus for large N 

f2" (0) = f ( f " -  '(0)) = a "  (B.5) 

The quantity a N is arbitrarily small for large N, which implies that f 2u- 1(0) 
must then be nearly equal to b where f has its single zero minimum. We 
must provide the additional information of the form of f at its minimum to 
complete the connection of the reduction parameters through (B.4). 

Let us presume the typical case where the minimum is quadratic. 
Expanding (B.5) about the minimum of f we obtain 

f " ( b ) [ b - f 2 " - ' ( O ) ] 2 ~ a  g 

Substitution in (B.4) yields 

Ot "= - -  a - 1 / 2  

and therefore a solution to the fixed point of our functional equation (3.3) 
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can be obtained from Feigenbaum's solution to (B.2) by the power law 
conjugacy 

f ( x ) = [ / ( x l / 2 ) ]  2 

where the reduction parameter  is now 

a = a - 2 =  0.159628442 . . .  

Feigenbaum (3) provides a set of coefficients for a power series expan- 
sion of)~ We repeat those coefficients here to correct a previous typographi- 
cal error. To compute f rapidly make the above power law conjugacy of 
Feigenbaum's 

7 

f ( x ) =  1 + E g, x2i 
i=1  

That  is, let 

where 

( 7 )2 
f ( x ) =  1+ E gi xi (B.6) 

i=1  

gl - - 1.527632997 

g2 = 1.048151943 • 10 -1 

g3 = 2.670567349 • 10 -2 

g4 = -3.527413864 X 10 -3 

g5 = 8.158191343 X 10 -5 

g6 = 2.536842339 X 10 -5 

g7 = 2.687772769 X 10 -6 

Equation (B.6) was used to obtain the estimates (5.18) for the diver- 
gence parameter.  

APPENDIX C. ASYMPTOTIC INDEPENDENCE OF nt+l(x)/nt(x ) 
ON no(X) 

We begin by substituting a m for x in (5.10) and rewriting the sum over 
k as 

2 ' - m _ l  ( p + l ) 2 " - I  no(f(k)(a,+m)) 
n,(a m) = a-' E E 

e=0 k=p2 m f(k)'(a'+") 

2l-m--1 2m_1 ,o(f(pz'+')(a'+m)) 

= a - '  p=0X t=0X f(e:m+,),(a,+m) (C.1) 
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Two relations which follow from the fixed point functional equation 
(3.3) are, for p and t integers: 

f (p2  m + t)( a I+ m ) = f<,)(a mf< e)(a ,)) 

and 

f(e2m+t)'(a'+m) = [ f(')'(a~f(P)(a')) ][ f(P;(a') ] 

Making use of these relations we then have 

2'-"-1 _, 2~ , no[ f(')(a~f(l')(a')) ] 
nt(a 'n) = a-' ~ [ f<e"(a') ] 

e=o ,=0 f~t)'(amf~e)(a')) 
2 l - ' ' -  1 

=a-('-m) E [f(P)'(a')]-ln.,(f(e)(a')) (C.2) 
p=0 

where in the last step we have used the definition (5.10) of nm(X ). 
Now from (5.10) it follows that for large l nt(x)~nt(O ) for all x fixed in 

the unit interval. It then follows from (C.2) that for l >> m >> 1, 

nz(0)~A,_mn,,(0 ) (C.3) 

where 
2 s -  1 

A~=a-~ E [/(e)'(0)] -I (C.4) 
p = 0  

It will be noted from (5.10) that A, is precisely ns(0 ) for the particular 
choice no(X ) = 1 and that from (5.12) and (C.3) 

8 = lim As+l /A,  

From (C.3), however, it also follows that any choice of no(X ) in (5.10) may 
be used to evaluate 6. 
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